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function for a Heisenberg S = 1 ferromagnet to include 
a strong axial crystal field interaction 
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School of Physics, University of New South Wales, Kensington, NSW 2033, Australia 
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Abstract. The Callen and Shtrikman result, which demonstrates an exact correspondence 
between the higher order moments ( S : )  of the Heisenberg ferromagnet calculated using 
either the RPA or an effective single-particle density matrix, is generalized to include a strong 
axial crystal field interaction. In particular, it is shown that a two parameter analogue for the 
Callen and Shtrikman result can be obtained for the S = 1 easy-axis ferromagnet, using the 
transformed Hamiltonian/random phase approximation (TX/RPA). 

1. Introduction 

In the theory of magnetic anisotropy for localized moments, the Callen and Callen (cc) 
model (1966) has played a key role for many years. In this model the experimentally 
determined reduced-magnetization curve M (  T ) / M ( O ) ,  is used to determine a tem- 
perature dependent, single-particle effective magnetic fieldx/(gy,P), which reproduces 
the observed magnetization exactly. Once x has been determined the single-particle 
density matrix can be used to generate the higher moments ( S : )  (n  > 2) required in the 
cc model of magnetic anisotropy. In particular, it has been shown that the agreement 
between magnetic anisotropy measurements and theory is often spectacular (see for 
example Feron et al ,  (1969), Rhyne (1972), Tajima (1971)). This observation, in itself, 
prompted Callen and Shtrikman (1965) to examine more closely the relationship 
between the (S: ) calculated using the simple single-particle density matrix, and those 
obtained using more sophisticated many-body theories such as the random phase 
approximation (RPA). Rather surprisingly, they were able to demonstrate that there was 
a one to one correspondence between the ( S : )  moments calculated using the RPA and 
the single-particle model, provided the single-particle effective field x/(gpgp) is chosen 
so that (S&, = (SZ)RPA. With this result underpinning the cc model, further debate on 
the theory of magnetic anisotropy for localized moments practically ceased. 

Nevertheless, despite the many successes of the cc model, the model only holds 
when the Heisenberg interaction X e x  is very much stronger than the crystal field inter- 
action XcF. In practice, few attempts have been made to extend the cc model beyond 
first order perturbation theory, although Bowden (1977) has examined the consequences 
of taking the cc model to second order in XcF. However to our knowledge no one has 
been able to probe the region where X e x  C XcF, despite many efforts to include crystal 
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field interactions, self-consistently, into the RPA model of the Heisenberg ferromagnet 
(see for example Devlin (1972), Haley and Erdos (1972), Egami and Brooks (1975), and 
Haley (1978)). In particular, these authors have shown that the calculated moments 
( S : )  within the RPA model cannot be obtained in a unique manner. 

Recently, however, Bowden and Martin (1990) have shown that it is possible, using 
the TX/RPA (transformed Hamiltonian/random phase approximation), to incorporate a 
strong axial crystal field interaction into the S = 1 Heisenberg ferromagnet, and to 
calculate the ( S i  ) uniquely. In this paper, the TX/RPA is used to generate a two parameter 
analogue of the Callen and Shtrikman result for the S = 1 ferromagnet, given that the 
preferred direction of magnetization is collinear with the axially symmetric crystal field 
interaction. 

2. S = 1 ferromagnet with a strong axially symmetric crystal field interaction 

A Heisenberg ferromagnet with an axially symmetric quadratic crystal field can be 
written in the form 

where J j j  ( K J  is the isotropic (anisotropic) exchange between the ith andjth atoms, D 
is the axially symmetric second order crystal field parameter, and the remaining terms 
possess their usual meaning. In this paper, only the case of D > 0 will be considered. 
Thus the easy direction of the magnetization lies along the z axis. Note that higher rank 
crystal field interactions can have no effect on the S = 1 spin ensemble. 

From Bowden and Martin (1990), it can be shown that the TX/RPA model yields the 
following unique solutions, for the S = 1 easy axis ferromagnet: 

(TA) = (1/fi) ( S 2 )  = (1 + 2 ~ i ) / [ f i ( 1  + 3Vi + 3 ~ ;  + ~ l 2  - 3 ~ ; ) 1  (2) 

and 

where 

(i) the thermal weighting factors are given by 
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(ii) the two excitation branches E , ( k )  and E z ( k )  appearing in equations (4) and (5) 
are given by 

E , ( k )  = gpBB,pp 4- fi(fA)(J(o) + K ( 0 )  - kJ(k)) + ( ~ / f i ) ( D  - ( f i ) J ( k ) )  (6) 

E,@) = gpCLgBapp + fi@A)(J(O) + K(0)  - kJ(k)) - (V?/fi)(D - ( f i ) J ( k ) )  (7)  

(iii) 

~ ( k )  = J ,  exp(ik - 6 , )  (8) 
1 

(iv) 6, are the nearest neighbour vectors. Note that in arriving at equations (2) and 
(3) irreducible tensor operators T ;  have been employed rather than their Cartesian 
counterparts S ,  and S , ,  because of the former's superior commutation, construction, 
contraction and rotational properties (e.g. Buckmaster et a1 (1972)). 

In practice, equations (2)-(8) can be used to calculate the ensemble averages (pi) 
and (pi) at any temperature, self-consistently. 

3. Extension of the Callen and Callen result 

Many authors have shown (see for example Tahir-Kheli and ter Haar 1962) that when 
the crystal field parameter D = 0, the magnetization for an S = 1 ferromagnet, in the 
random phase approximation can be expressed in the form 

(FA) = ( l / f i ) ( S z )  = (1 + 2 9 ) / [ f i ( 1  + 3 9  + 3q2)] .  (9) 

The single thermal weighting function 9 in equation (9) is of the form 

with a single excitation branch 

E ( k )  = gpBBapp + fi(fb)(J(o) + K(O) - J ( k ) )  (11) 

which is the usual spin-wave result. 

Shtrikman define an effective field parameter x such that 
In order to make contact with the single-particle effective field model, Callen and 

q = l/(ex - 1). (12) 

(TA) = (1/fi)(sZ) = ( l / f i > ( e x  - e-')/(e' + 1 - e-.) (13) 

p = eXS~/Tr[eXSz]. (14) 

Further, on substituting equation (12) into (9) they observed that 

which is identical to the result obtained using the single-particle density matrix 

Thus the parameter can be viewed as a temperature renormalized effective 
field acting on a single spin. In addition, Callen and Shtrikman (1965) demonstrated that 
the higher order moments ( S : )  obtained from the single-particle model defined by 
equations (12)-(14), were identical to the moments calculated using the RPA, for all S .  
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In essence, this procedure works because there is a one to one correspondence between 
the single degenerate branch E ( k )  in the RPA, and its single ion counterpart 

In the -r?e/nPA model however, there are two weighting factors cpl and cp2 for the 
S = 1 ferromagnet, in place of the single factor cp discussed above. In the presence of 
the crystal field interaction therefore, it is necessary to define a new single-particle 
density matrix which includes both magnetic and quadrupole parameters. In place of 
equation (14) therefore we write 

For S = 1, this single-particle model has two Am = -+1 transitions 

Ell) - = ix + (3Y/6) l k B  

Ejo, - E1-1) = [ X  - (3Y/V%)]kBT 

which are the single-particle counterparts of E , ( k )  and E, (k ) .  
Next, we define x and y via the combinations 

This ensures that both the many body and single-particle descriptions possess the 
same occupation number. Secondly, on substituting (19) and (20) into the many body 
expressions for (TA) and ( T i )  it is easily shown that 

1 e x p b  + ( Y / m  - exP[-x + ( Y / m  
m x p b  + ( Y / G ) I  + e x P [ - ( 2 Y / m  + exP[-x + ( Y / m >  

(PA) = -(Sz) = fi 
(21) 

1 (fi) = - {3(S3 - 2) 6 

which are identical to the single-particle averages obtained using equation (16). 
Further, using the identity that ( ? n o )  = 0 for S = 1 when n > 2, it is easily shown that 
(S,) = (S:) = (S:) etc., and (S i )  = (S!) etc., for both the T?e/nPA and its single-particle 
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equivalent. Thus the temperature renormalized effective single-particle density matrix 
of equation (16), yields the same ensemble averages as the many body TX/RPA. 

4. Free energy considerations 

In the presence of a small additional magnetic field B ‘ ,  the Hamiltonian for the spin 
system in question can be written in the form 

where (i) X 0  is given by equation (l), (ii) 

and (iii) 6 is the angle between B ’  and the z axis. Note that we have constrained B ’  to 
lie in the zx plane. Consequently, we may make use of perturbation theory (e.g. Bowden 
(1977)) to show that the free energy can be written in the form 

where Fo is the unperturbed free energy, 

X’ X ‘  - (X’)2] = - P [ B ’ .  1 /y B’]  (27) F2 = t P [ (  1 ) 2 

In equation (27), ,y is the magnetic susceptibility tensor. More details of the ensemble 
average ( A  J B )  can be found in the paper by Bowden (1977). 

If we now employ the equivalence between the TX/RPA, and the equivalent single- 
particle model of equation (16), we find 

These expressions can be used to compute the principal susceptibility components xxx 
and x z z ,  and the torque r = M X B ’  (= d F / d e )  experienced by the ferromagnet in a 
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Figure 1. Calculated values of (S,) and (Si) versus temperature for various values of D/J(O). 

weak applied magnetic field B ' .  Whilst the result for xzz  [a( (S$)  - (S,)*)]  is exact, the 
expression for xxx (the last term in equation (29)), is based on the assumption that 

In practice, it is difficult to obtain an expression for (S,J S,) within the RPA model. 
However due to the equivalence between the TX/RPA and the single particle model, we 
believe that equation (30) is likely to be a good approximation. In passing we note that 
both (Sx J SX)TX,RPA and (S, J Sx)sp possess the same upper bound [S(S + 1) - 
(S$)]/2, and lower bound 0. 

To illustrate the above results, we have calculated the ensemble averages (S,) and 
( S i ) ,  xZL and xxx for the cases of D/J(O) = 1, 3 ,  6 (when K(0)  = 0). The results can be 
seen in figures 1 and 2 respectively. Note that these results have been calculated for the 
special case of a face centred cubic lattice. Given (S,) and ( S i )  it is also possible to 
extract the equivalent single particle model parameters x/(gpBp) and y/(gpgp), which 
are shown in figure 3. It will be observed that x/(gpBp) decreases as T+ 0 K. This 
feature is also present in the ordinary RPA model of Tahir Kheli and ter Haar (1962). In 
the ordinary RPA it can be shown that as T-+ 0 K, X/(gpBp) + 0 while x -+ x. However 
in the TX/RPA model 

Note that as D is increased, the effective quadrupole parameter y/(gpBp) remains fairly 
constant over the whole temperature range, in accord with equation (32). More details 
of the behaviour of (S,) and ( S i )  etc., in the limit T+ 0 K are given in the appendix, 
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Figure 3. Calculated values of the effective single particle parameters x / (gpBp)  and y(gygp) 
obtained from the results shown in figure 1. 

where similar expressions to the low temperature expansion of Tahir Kheli and ter Haar 
(1962), are presented and discussed. 

5. Conclusions 

We have shown how the Callen and Shtrikman result can be generalized to the case of 
an S = 1 ferromagnet subject to a strong uniaxial crystal field interaction. In place of a 
single parameter x ,  two parameters x and y are now required. However once x and y 
have been determined, there is a one to one correspondence between the moments 
(S : )  of both the T’X/RPA and the single-particle model. These results have subsequently 
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been used to derive explicit expressions for the free energy of the ferromagnet in the 
presence of a small additional magnetic field B I .  Whilst the results given for F1 and 
xrz are exact (within the T=X/RPA), in practice it was necessary to make an additional 
assumption in order to obtain an expression for xxx.  In summary therefore, equations 
(28) and (29) can be viewed as the strong crystal field counterpart of the cc model. They 
could be used, for example, to compute the torque r = M x B (= aF/a 0) experienced 
by the ferromagnet in a weal; applied magnetic field. Finally, we stress that the 
expressions obtained in this paper apply to S = 1 spin systems only. In a following paper 
however, we will demonstrate that the two parameter analogue of the Callen and 
Shtrikman result, also holds for S = 312 spin enserr.bles. 

Appendix. Thermal weighting factors at low temperature 

Starting from the thermal weighting function Q, defined by equations (10) and ( l l ) ,  with 
both Bappand K(0)  set equal to zero, Tahir Kheli and ter Haar (1962) obtain the following 
low temperature expansion 

where 

(i) a l  = 3nv a2  = n 2 w v 2  (A31 

(ii) ~ ( n )  = r-" (the Riemann zeta function) (A41 

m 

r =  1 

(iii) v = 1 w = 33/32 (sc) 

w = 2811288 (BCC) (A5) = 3 9 2 1 3  a. 

= 2113 w = 15/16 (FCC) . 
Thus at low temperatures ( S , )  falls as T3l2, in accord with the spin wave result. Note 
that our definition of J(0) in equation (Al) and (A2) is twice the value used by Tahir 
Kheli and ter Haar (1962). 

In the case of the TX/RPA, it is also possible to obtain analogous expressions to that 
of equation (A2). In practice, it is convenient to examine the low temperature expansions 
of the combinations q l  t q2 ,  because these combinations involve E,(k) and E2(k) 
separately (see equations (19) and (20)). Once low temperature expressions for Q, +- q2 
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have been derived, it is a relatively easy matter to determine q ,  and q 2 ,  and hence 
( ? A )  ( ( S z ) / f i )  and (f'g) using equations (2) and (3), respectively. For q1 + q2 we find 

(i) E ,  ( k )  is given by equation ( 4 )  

(iii) A = vT( f 'A)K(O)  + ((FA) - V'5( ?i))/fi + ( f i / f i ) D  ( A 8 )  
(iv) a l  and a2 are given in equation (A3) 

(v) v and cc) are given in equation ( A 5 ) .  

Note that at T = 0 K (TA) = f i ( f ; )  (= S / f i ) ,  which leads to simplified expressions 
for ( A 6 )  and (A8). 

For Q: - Q, we obtain 

=lexp((h/kBT)[(-*/V/Z)D + f i ( f ' A ) ( J ( O )  + K(O))]}  - I ] - ' .  ( A 9 )  
Thus equations ( A 6 )  and ( A 9 )  can be used to calculate q and q2,  and hence obtain low 
temperature expansions for (S,) and (Si). 

In order to compare our results with the well known low temperature expansions of 
(S,) given by Dyson (1956) and Tahir Kheli and ter Haar (1962), we set D ,  Bapp and 
K(0)  all equal to zero. We find 

(S,) = S - ( 6 k ~ T / 4 n v h J ( O ) S ) ~ / ~ c ( q )  
s= 1 
D=O 

+ (6kB/4nvhJ(0)S)3(T2hJ(0)/2kg)c(j)c($) + . . . . 
Thus the TX/RPA predicts that (S,) will decrease as T3/* when D = 0, even though the 
model only strictly holds for large crystal field parameters. 
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